
JOURNAL OF CATALYSIS 20, 132-140 (1971) 

Transfer Paths in Kinetics of Heterogeneous Catalysis 

JOHN HAPPEI, AND R. S. CSUHA 

Department of Chemical Engineerircg, New York University, University Heights, 
New York, N. Y. 1045s 

Received February 13, 1970; revised June 22. 1970 

Atomic transfer rates are a useful way of characterizing the structure of chemical 
kinetic equations in heterogeneous catalysis. In general, rate expressions may be 
developed under actual reaction conditions which involve considerably fewer un- 
known parameters than techniques involving overall kinetics. Also, by experimenta- 
tion under various limiting situations valuable information regarding rates of in- 
dividual mechanistic steps is often obtainable. 

It is the purpose of this paper to show 
that isotopic transfer rates can provide 
much useful information on the necessary 
form of the rate equations for an overall 
reaction. It is then possible to develop rate 
equations on a less restricted basis than is 
necessary using the classic approach of 
Hougen and Watson (1). In particular it 
is not necessary to assume a single slow 
step in a reaction mechanism. Such an as- 
sumption may not always be valid over a 
wide range of partial pressures of reactants 
and products. 

For pseudomonomolecular kinetics with 
multiple reactions, the techniques of linear 
algebra have been elegantly employed by 
Wei and Prater (2). In the present study 
it is shown that for a single overall reac- 
tion which is characterized by a single re- 
action mechanism, linearization is possible 
on the basis of the material balances in- 
volved without development of the kinetics 
of individual mechanistic steps. Extension 
to multiple reactions is in progress but not 
reported here. 

Our study is based on the stoichiometric 
number concept as applied to reactions 
where more than one rate-controlling step 
may exist. This concept was originated by 
Horiuti (3) and has been discussed by 
Happel (4) for cases where a single rate 
controlling step exists and for more com- 

plicated cases, using the concept of reaction 
paths introduced by Happel (5). The stoi- 
chiometric number is defined for each ele- 
mentary step constituting part of an overall 
reaction. It is the number of times that the 
step takes place for each occurrence of the 
latter. When a single rate controlling step 
exists, it is possible to relate the stoichio- 
metric number of this step to the thermo- 
dynamic equilibrium constant and the 
speed of the forward and reverse reactions. 
If a reaction occurs in a single path and the 
stoichiometric number of each rate con- 
trolling step is the same, it is still possible 
to relate forward and reverse reaction rates 
to thermodynamics in somewhat the same 
way, as shown by Temkin (7). 

BASIC RELATIONSHIPS 

The concept of forward and reverse reac- 
tion rates requires some explanation since 
they are not uniquely fixed without specify- 
ing corresponding reaction paths. The rate 
of an overall reaction is often reported in 
terms of disappearance of a key reactant 
and often this species is taken to have a 
coefficient of unity in the equation for the 
reaction so the rate may be taken in terms 
of occurrences of the overall reaction per 
unit time. Since in complex reactions differ- 
ent atoms of a reacting molecule may move 
forward to products at different rates, am- 
biguity results when it is attempted to 
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carry this concept to the description of 
forward and backward rates. It is thus con- 
venient to identify the reaction rate with 
the conversion of the atomic speries 
involved. 

Transfer of atomic species proceeds 
through a network of mechanistic steps 
which when summed will yield the overall 
reaction. Sequences beginning at a given 
reactant and ending at a product charac- 
terize these networks. In the sequences 
each step is related to the previous one by 
possessing a common molecular species. 
These sequences can be used for developing 
rate equations for a given mechanism. How- 
ever, a sequence which possesses the ad- 
ditional prol:erty that a single atomic 
species is contained in all its steps is more 
useful from the standpoint of experimental 
validation by labelled atoms. We have 
taken the definition of a pat’h (5) to be 
such a sequence in which no break in the 
chain of atomic t,ransfer occurs. It is pos- 
sible to define unidirectional velocities in 
such paths and often to measure them by 
tracer techniques. 

Thus, for the case where an element ap- 
pears in only two molecular species of a 
reaction, a reactant and a product, the 
atoms of the element will pass sequentially 
from reactant through all the mechanistic 
steps of an atomic path to the final product,. 
If we assume that a steady state is attained, 
it is possible to make simple material bal- 
ances to determine how overall net velocit,y 
is related to the velocities of individual 
mechanistic steps. This approximation is 
especially suited to heterogeneous catalytic 
reactions, where steady state concentrations 
of intermediate can exist on catalytic sites, 
without any substantial passage of such 
intermediates to the effluent stream. The 
forward atomic velocity in such a path is 
the rate at which atoms introduced into the 
mechanistic sequence of steps move to 
product without reverting back to the 
original reactant molecule. For consistency 
with usual kinetic nomenclature, in which 
reaction velocity is expressed in terms of a 
molecular species A containing an element 
e, we will express the forward velocity V, 
as, (the forward atomic velocity of element 

e)/ [ (the number of atoms of, e in molecule 
A) (coefficient of A in the overall chemical 
equation) 1. The forward atomic velocity is 
proportional to the overall forward velocity 
for the chosen path expressed in terms of 
occurrence of the overall reaction as 
written. If more than one path exists for 
atomic transfer defined in this manner, each 
will correspond to a different overall for- 
ward velocity. If there is only one path 
and all rate controlling steps lie in it, the 
forward velocity corresponds to that dis- 
cussed by Temkin (7). Analogous defini- 
tions apply to backward velocities. 

Suppose a series of steps in an atomic 
path is designated by steps 1, 2, . . . , n with 
mechanistic step velocities ZJ~~, u,~, . . . , 
V +lL. The overall forward or backward 
velocity over more than one step will be 
designated by V,1~2,.~~,n. For the first step, 
which leads from the reactant to the 
mechanistic series 

V+l = v+1/v* (1) 
and 

v-1 = v-,/VI, (2) 

where vi’s represent the stoichiometric num- 
bers of corresponding steps. For the follow- 
ing step 

V+ls2 = V+l (probability of the species 
going forward through step 2) (3) 

and 

v+1.2 zz V+l 

[ 

v+2lv2 

21+2/n $ v-’ I 

= 1 
/I ;l+vz2. 3 

(4) 

At the same time 

V-lJ = ‘2 (probability of the species going 

backward through step 1) (5) 

and 

If this procedure is repeated throughout 
the TL steps of the sequence, we will have 
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J7+1’2’ . . ,n = 1 

and 

+ fJ-9-2 . . . v-(,-l)Vn 

v+J+Iv+z . . * V+(,-l)v+, I 
(7) 

V-1,2’ . ,n = 1 

/c 
:+ 

~+d(n-1) 
+. . . 

n v-nv-(n-1) 

+ 
V+nV+(t+-1) * . . v+2v1 v-,v-(n-l) . . . v-2v-1 1 @I 

We will take Eqs. (7) and (8) as a 
formal definition of the unidirectional 
rates in a path. If Eq. (7) is divided by 
Eq. (8), we obtain for a single overall 
reaction 

y+1,2, . ,n 

V-1,2’ ,n = 

v+1v+2. . . v+, 

v-IV-2 . . . b-, 
(9) 

A relationship for overall velocity V 
may be developed similar to Eqs. (7) and 
(8). Use of it and Eq. (9) gives 

J.7 = J7+1.2, . . ,n - v-1,2, . ,n. (10) 

Thus, for paths which can be identified 
with the transport of a single atomic 
species, although the individual unidirec- 
tional reaction velocities will vary, the dif- 
ference in unidirectional rates will always 
give the overall velocity of the reaction. 
Even though rates in any path can be so 
related, it is of >course possible that rate- 
controlling steps will exist in more than a 
single path. In that case it will not be pos- 
sible to relate the overall velocity to 
terminal pressures, compositions, and tem- 
perature without taking into account the 
unidirectional velocities in all paths con- 
taining rate controlling steps. 

For the case of a single path reaction, 
the determination of V,(P) by isotopic 
transfer is simble. Thus, for an element e, 
if teA is designated as 

&A/&A = V+(P), (11) 
where (p) refers to velocity in a single 
path. Note that in general teA is observable 
as a differential both in degree of conver- 
sion of A and in degree of transport of 
labelled isotope with respect to passage 
through a unit weight of catalyst. It is 
thus best determined in a differential re- 
actor operating at steady state (10) but 
can be determined from integral data (14) _ 

It is also possible to show that even 
where a single product R containing e is 
also labelled with isotope, the net rate can 
be related to the unidirectional velocities 
in a straightforward manner. Thus, if no 
isotopic kinetic effect exists and the isotope 
follows only the designated atomic transfer 
path we would have for a series of mecha- 
nistic steps 

teA = teR = (zeAv+l - z,xw-*)/vl 
=z (z,Xw+2 - ZeX~U-31V2 (12) 

=. . . 

= (Zexwl,.n - Z,RV-,)/ v,, 

where X,, X,, . . . ,XCn-,) are the inter- 
mediates of the mechanistic path. If zpi is 
eliminated for each intermediate species 
Xi, we obtain, from the set of Eqs. (12) : 

teA = t,R = &A 
/r 

:+=&+. . . 
+ ? 

-I 
v-g-2 . . . V-f74~Vn 

v+1v+2 . . . V+(n-1$+n 1 

+ +I . . . v+2v1 

v-, . - (13) . . v-g-1 I 
We may substitute the relationship for 
V+(P) given by Eqs. (7) and (8) to obtain 

&,A = t,R = Z,AV+AR - z,RV-AR. (14) 

the net rate of isotope transfer from react.ant molecule A 
(number of atoms of “e”in a molecule of A) x (coeficient of A in the overall chemical equation) 

and zeA is defined as Here the superscript AR refers to the se- 

the concentration of isotope e in A 
total concentration of atoms e in A 

quence of steps leading from reactant A to 
product R. 

Often it will not be possible to find an 
it is clear that, if we simply marked A, atomic species or characteristic marked 
leaving product unmarked atom in an overall reaction which will fol- 



TRANSFER PATHS IN KINETICS 135 

low only a single path. In view of the 
simplification in kinetics effected by the 
use of relationships like Eqs. (7) and (8)) 
it seems desirable to establish how velocity 
terms of mechanistic steps can still be 
grouped according to this definition of 
atomic paths. 

Suppose that an element e is confined to 
three terminal species (two paths) -these 
being designated by a reactant A with 
products R and S. We will retain the same 
basic definition te” of isotopic transfer rate 
as previously because net transfer of iso- 
topes from a single reactant to two species 
is measured simply by the increase of iso- 
tope in each of the two product species. In 
addition, we will assume an effectively uni- 
form surface in which all sites involved in 
the mechanism behave alike, though they 
may interact with each other. 

It can be demonstrated that to obtain a 
relationship similar to Eq. (14)) it is neces- 
sary to take tcA = teR = teS. In this case the 
t,” refer to transfer from reactant A or to 
products R and S. Such a restriction is pos- 
sible by adjustment of the concentration 
of the isotope in the reacting mixture, em- 
ploying a differential experiment to deter- 
mine the rates. By conducting an elimina- 
tion similar to that used for Eq. (12), me 
again find that (analogous to Eq. (14) 

t,* = t,R = t,S = Ze* V+“R - Z,RV-AR 

= z,AV+AS _ .z,SV-As. (15) 

Therefore, when an element is contained in 
more than two paths of a mechanistic sys- 
tem for an overall reaction, it will still often 
be possible to apply relationships such as 
Eq. (15) by adjusting experimental con- 
ditions so that all tei are equal. Under these 
conditions Eqs. (10) and (15) may be used 
to relate the unidirectional velocities to 
quantities that can be determined 
experimentally. 

To utilize these relationships for de- 
veloping rate equations, it is necessary in 
a given system to find reaction paths which 
will encompass all rate controlling steps. 
Experiments with isotopic tracers will often 
enable this to be accomplished. Then, it is 
a straightforward matter to write rate ex- 
pressions which will provide correlation of 

data obtained. Csuha and Happel (6) have 
derived expressions similar to those given 
above and shown how they may be applied 
to situations where the mechanism involves 
a single branching step. This limitation is 
not necessary and complicated mechanisms 
can be treated if only the necessary tracer 
path: can be evalua’ed. 

GENERAL RATE EQUATIONS 

We may rewrite Eq. (9) in a form suit- 
able for displaying the fact that any num- 
ber of paths may be written for a given 
overall reaction following the individual 
mechanistic steps in each path without 
identifying the exact steps involved: 

06) 

where the product is to be taken over all 
steps “r” in any given, path “i.” We use the 
superscript i for any path of a multiple 
path system and p for the only path of a 
single path system. Equation (16) reduces 
to the form given by Temkin (7) for a 
single path system. Christiansen (8) also 
derived a similar expression for a single 
path and restricted it to a specified kinetics 
for the individual mechanistic steps. 

By adding up the contributions of the 
Gibbs free energy changes of all the mecha- 
nistic steps to obtain the total Gibbs free 
energy change for the overall reaction, the 
following expression, given by Hollings- 
worth (9), may be obtained 

= exp (AGIRT), (17) 

where vr refers to the stoichiometric number 
of each step in the overall reaction (in- 
cluding ail steps in all paths), AG is the 
Gibbs free energy change for the overall 
reaction, R is the universal gas constant, 
and T is the absolute temperature. The COR- 
tinuing product is taken over all steps in 
the reaction mechanism. 

In order to obtain simple kinetic rela- 
tionships from Eqs. (16) and (17), we will 
be confined to mechanisms involving simple 
substitutions of the continuing product 
terms. Thus, if all the steps of a mechanism 
occur in a single path and have a common 
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stoichiometric number, we will obtain 

V-(p) 
__ = exp (AG/vBT). V+(p) 

The stoichiometric number, obtained from 
Eq. (18), will be 

-AG 
v=z / 

11, Ti+(p). 
V-(p) (19) 

This relationship, due to Horiuti (S), en- 
ables one to determine whether a reaction 
mechanism follows a single rate controlling 
path. In turn, by making use of Eq. (lo), 
we can obtain from Eq. (18)) a convenient 
rate expression: 

V = V+ip)[l - exp($$)]. (20) 

It is important to point out that not all 
mechanistic steps need be included in the 
above relationships but only those which 
are rate controlling. A rate-controlling step 
may be taken as one which has a large 
Gibbs free energy change. For such a step 
the velocity ratio (v+,/vL.) must have a 
value which is significantly higher than 
unity. Conversely, for a step which is not 
rate-controlling (i.e., close to equilibrium), 
the Gibbs free energy change approaches 
zero, and the ratio ’ (v+,.Jv-,) for the step 
must be very close to unity. Since for each 
step in a mechanism, V = (v,, - v-,)/v~ it 
is necessary for the steps in which v+J 
v-, II 1 to have large unidirectional veloc- 
ities. A mechanism may include any num- 
ber of steps in branching paths with values 
of v+/v-, N 1 without affecting the rela- 
tionships given in Eqs. (16)-(20). 

Studies of the dehydrogenation of n- 
butane to butenes by Happel and Atkins 
(10) using “C as a tracer indicate that 
this system can be treated as a pseudo 
single overall reaction. The three isomeric 
butenes produced reach equilibrium very 
rapidly compared with the rate of dehy- 
drogenation and thus butenes are treated 
as a single component. Further studies by 
Happel, Hnatow and Mezaki (11) indicate 
that the form of the prefactor. V+(P) in Eq. 
(20), involves more than one term due to 
the simultaneous reactions occurring, but 

good correlation is obtained with a sepa- 
rable potential factor i.e., the expression in 
brackets in Eq. (20). Studies of isobutane 
dehydrogenation by Kamholz (12) in- 
dicate that a stoichiometric number of 
unity is again obtained using l*C. In 
this case the prefactor is simpler probably 
because it may be directly identified with 
a single V+(P) corresponding to the forma- 
tion of only one olefin, isobutene. 

When rate-controlling steps no longer 
occur in a single path, the relationships 
derivable from Eqs. (16) and (17) become 
more involved. Thus, for a reaction mecha- 
nism consisting of two paths of atomic 
transfer we may expand Eq. (17) to in- 
clude all rate-controlling steps. 

R [z] = [G] [F] [# (21) 

over all 
rate-con- 
trolling 

steps 

where we have denoted the product of all 
rate-controlling steps common to both 
paths (1) and (2) by V+(1J)/V-(1,2). 

A number of specific useful developments 
of Eq. (21) are possible. For example, 
where all mechanistic steps have the same 
stoichiometric number, 

or 

AG 
exp - [ 1 vRT 

1 1 1 
VI+(‘) + ~ - ~ 

V+(2) VP’1’2’ 

+ v2 
[ 

1 1 
V+‘l’V+(2) - jpv-“A 

1 - 
J,7+(z)v~o.2) 1 [ + v3 1 

I 
J7,“‘V,‘2’V~L2) . 

(23) 

While this equation is not explicit in V, 
computer solution presents no problem. 
However, unless a terminal product is pro- 
duced at the branching step, it will not be 
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possible to measure li*(l.‘) directly. v-(‘s’) 
is then the only variable in Eq. (23) that 
cannot be determined directly from an ap- 
propriate experiment. Therefore we could 
use Eq. (23) to determine V-(1~2) provided 
that there exist only two paths in the re- 
action mechanism. Note that Eq. (23) will 
reduce to Eq. (20) if T’+(l.z) are t’he only 
rate-controlling steps. It will also follow 
Eq. (20) for a path which includes all 
rate-cont’rolling steps, and in that’ case the 
apparent stoichiometric number, as given by 
Eq. (19)) could be very high for the path 
which does not include rate-controlling 
steps. A similar observation was made by 
Matsuda and Horiut’i (13). If rate-con- 
trolling steps do not occur in V?QJ) but in 
both V_(l) and V=@) Eq. (23) reduces to 

Studies of Russian dat’a on butane and 
butene dehydrogenat’ion by Happel, Atkins, 
and Tanaka (14) indicate stoichiometric 
numbers for W transfer greater than unity. 
If hydrogen chemisorption and desorption 
are important under the conditions of ex- 
periment, a relationship like Eq. (24) may 
be useful. More data will be needed to es- 
tablish the applicability of this equation. 
Another system with a single branching 
mechanism appears to be the catalytic oxi- 
dation of SO, to SO, over vanadium cata- 
lysts. Using YS as a tracer, Happel, 
Odanaka, and Rosche (15) have found 
large stoichiometric numbers. In this 
case since oxygen chemisorption has a 
different, stoichiometric number than the 
other mechanistic steps, it would be nec- 
essary to derive rate relationships from 
Eqs. (16) and (17), which though more 
complicated may be useful since they en- 
able the structure of rate equations to be 
elucidated without reference to any par- 
ticular kinetic equations for mechanistic 
steps or any specific adsorption rate 
theories. The general relations should also 
be useful for cases where more than one 
branching step occurs. 

In general, the values of V+(i) which ap- 
pear in these equations will be functions of 
pressure, temperature, and composition of 
the ambient phase. Since these functions 
may be complicated, it is interesting to 
examine the implications of these theories 
to limiting conditions where they assume 
simpler forms. 

The left side of Eq. (22) includes the ex- 
perimental conditions of pressure, temper- 
ature, and concentration which may be 
varied in different ways to change cxp(nG/ 
vRT). To illustrate, let us consider a simple 
two path reaction 

A?-RfC, (25) 

which is assumed to be governed by the 
mechanism 

(‘4 Al + 2 %?I + Cl 
u-2 

(26) 
(3 R/33+1 

“-3 

where 1 represents catalyst sites and the 
individual mechanistic steps have velocities 
u,,. In this case, the stoichiometric number 
v is taken as unity for all steps. The over- 
all velocity expression, written after the 
form Eq. (22), will be 

AC 
exp RT KPA L-1 

Pm[ v-IL2v-3 ] 
v+1v+zk7 

x [=I [El- (27) 

ABSENCE OF COMPONENTS 

An experiment under the terminal con- 
ditions of pure reactant, with pB = pc, = 0 
implies zl-:, = 29-, = 0 with J7-(1) = I’_(z) = 

0 and results in the limiting case that 
V+(l) = Vi(r) = 1’ for both paths (taking 
Vt(r) in the path of reaction steps 1, 2, and 
3 from A to R and TjLc2) in the path of re- 
action steps 1, 2, and 4 from A to C). On 
the other hand, taking p., = 0 would result 
in V-(l) = I~-@) = -V so that the reverse 
unidirectional rates would assume limiting 



13s HAPPEL AND CSuHA 

values. Taking either p, = 0 or p, = 0 
alone would enable determination of V+(Z) 
or Vto), respectively. Comparison with V 
in each case would indicate the relative 
importance of the paths on reaction rate. 
In principle a reaction of any degree of 
complexity could be studied in this fashion 
by systematic elimination of terminal 
Species. 

IRREVERSIBLE REACTIONS 

An irreversible reaction is usually taken 
to mean one in which the final conditions, 
given sufficient time, correspond to com- 
pletion of the reaction in either direction. 
Thermodynamically, when the reaction is 
considered in the forward direction it cor- 
responds to the case of K + co and hence 
exp (AG/vRT) + 0. In such a case under 
conditions where Eq. (20) applies, V = 
V+(p) for all concentrations of reactants 
and products. However, if there is more 
than one rate-controlling path, there are 
various ways in which exp(AG/vRT) could 
approach zero. 

Referring again to Eq. (27), we have a 
case where the left side is always equal 
to zero; assuming that even if PA is very 
small K is still sufficiently large so that an 
indeterminate form is not obtained. 

We see that if any v-~ < v+~ the condition 
that exp (AG/RT) + 0 will be met. Thus 
for Eq. (27), if v-, < v+~, we would have 
V = V+(l). But Vt@) could still each have 
appreciable values. It is only when v+ < 
v+~ or v-, < v+~ that both V-(l) and V-@) = 
0, so that V = V+(l) = V+c2) as in the case of 
the terminal condition pe = pc = 0. If 
V-(2)/V+(2) + 1, the rate V+(l) would be 
controlling and a reaction rate expression 
could be written without involving Vf(*). 

Irreversible reactions can be studied 
under conditions where V = 0, when all 
the reactants are not present to form the 
final product (i.e., a terminal condition 
with a reactant absent and with K simul- 
taneously very large). 

APPROXIMATIONS NEAR EQUILIBRIUM 

A number of authors (9) have obtained 
relationships based on expansions of Eq. 

(17) near equilibrium. Thus, the affinity 
A = -AG may bc written in terms of the 
overall velocity as 

= - Cvrln[l -El. (23) 
r=1 

If V is expanded in a Maclaurin series about 
the equilibrium point V = 0, A = 0, we 
obtain 

- x-2 (~,3/~+7”) 1 A 
IO 

~--- 
(v12,‘u+,)13 2! RT 

’ + . . . c29l 

For a path with a single branching mecha- 
nism as represented by Eq. (22), the first 
term of this expansion becomes 

v= A/RT 

I 

. (30) 

Note, in this case we have employed the 
equilibrium relation that V+(1’2) = V-(lJ). 
The prefactor I/ [v (l/V+“’ + l/V+‘? - 
l/V+(lJ))] does not correspond to a for- 
ward reaction velocity constant which can 
be applied far from equilibrium. Tracer 
measurements would enable us to establish 
whether the overall velocity of a given 
reaction near equilibrium is a linear 
function of l/V+(*), 1/V+(2), 1/(1/V+(l) + 
I/V+@)) or the entire denominator of the 
right hand side of Eq. (30). 

Note that V+(l), V+(*) and V+(1*2) will 
be constants near equilibrium only for 
given proportions of the three terminal 
species involved. Prigogine et al. (16) and 
Benson (17’) discuss the case in which one 
path is involved in Eq. (30) (i.e., V = 
V+(l) (A/vRT) and the rate V+(l) can be 
represented by a power law model. 

When experiments are conducted pre- 
cisely at equilibrium with V = 0 and 
A = 0, then all u,, = zi-,. Irreversible re- 
actions in which V = 0 have already been 
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noted. It is possible at equilibrium to 
measure unidirectional rates by isotopic 
tracers with all terminal species present. 
Benson (17) has reported treatment of the 
homogeneous reaction 

2?;0 + 13r:! s “NOB1 (31) 

at equilibrium, using radioactive bromine 
as a tracer. This procedure in effect as- 
sumes that the bromine transfer path con- 
t’rols the reaction kinetics. 

EXCHANGE REACTIONS 

,4n exchange reaction may be defined as 
one in which no net atomic transfer occurs 
in the path studied. Such reactions can be 
studied only by tracer techniques. Ex- 
amples of their occurrence have been di+ 
cussed in connection with irrcvcr~ihle rc- 
actions and equilibrium reactions, where 
V = 0 because of thermodynamic considcr- 
ations. Many other systems may also be 
characterized in this manner, with I- = 0. 

A reaction which is thermodynamically 
possible will not necessarily proceed at a 
measurable rate. If the velocities for any 
one step in a mechanism ulr+ 0, the vZr 
for every other appreciably faster step will 
be approximately equal to each other (i.e., 
at equilibrium) and path velocities can be 
determined by tracer techniques. Thus, a 
reaction which has a step which is slow in 
O’ICJ direction, (e.g. the forward direction) 1 
can be made to satisfy this requirement by 
reducing the product of the slow step to 
zero concentration. 

Exchange reactions can also be con- 
duct.ed while a react.ion is taking place with 
V # 0. Thus in the reaction of an equi- 
molal mixture of hydrogen and butcne, no 
net transfer of hydrogen occurs between 
these species. 

Koehler and Happel (18) observed rapid 
exchange of deutcrium in the course of hy- 
drogenation, indicating that reactions in- 
volving adsorption and desorption of hy- 
drogen and butenes are rapid and not rate 
controlling for the formation of butane. 

CoNCLnsIoNs 

Employment of the relationships above 
will facilitate the elucidation of reaction 

mechanisms and the development of ap- 
propriate kinetic equations. The Vfci) can 
generally be determined for all values of 
the parameters involved so that equations 
expressing V in terms of them can be used 
to test the structure of the rate equation 
for an overall reaction. Once the relation- 
ship of I’ in terms of the V,(i) values is 
determined, specification of reaction and 
chemisorption kinetics is necessary to cal- 
culate the free site concentration on a cata- 
lyst. In Eqs. (7) and (8) the intermediate 
st.ep velocities all involve balancing numer- 
ator and denominator factors, so that for 
every vaI, a corresponding vu-(,-, , appears, 
except for terminal mechanistic steps. Thus 
concentrations of intermediate adsorbed 
species cancel, if all rate-controlling steps 
are in a single path. In this case the use of 
the apparent stoichiometric number is 
especially useful. These techniques should 
prove useful in reaction kinetic and 
mechanistic studies. 
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